Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Naturwissenschaften ; 111(2): 20, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558027

RESUMO

The Zingiber zerumbet rhizomes are traditionally used to treat fever, and the in vitro inhibitory effect of ethyl acetate extract from Zingiber zerumbet rhizomes (EAEZZR) against DENV2 NS2B/NS3 (two non-structural proteins, NS2 and NS3 of dengue virus type 2) has been reported earlier. This study was carried out to establish an acute toxicity profile and evaluate the anti-fever (anti-pyretic) activities of EAEZZR in yeast-induced fever in rats. The major compound of EAEZZR, zerumbone, was isolated using chromatographic methods including column chromatography (CC) and preparative thin-layer chromatography (PTLC). Additionally, the structure of zerumbone was elucidated using nuclear magnetic resonance (NMR), liquid chromatography mass spectrometer-ion trap-time of flight (LCMS-IT-TOF), infrared (IR), and ultraviolet (UV) spectroscopy. The toxicity of EAEZZR was evaluated using Organization for Economic Cooperation and Development Test Guideline 425 (OECD tg-425) with minor modifications at concentrations EAEZZR of 2000 mg/kg, 3000 mg/kg, and 5000 mg/kg. Anti-fever effect was determined by yeast-induced fever (pyrexia) in rats. The acute toxicity study showed that EAEZZR is safe at the highest 5000 mg/kg body weight dose in Sprague Dawley rats. Rats treated with EAEZZR at doses of 125, 250, and 500 mg/kg exhibited a significant reduction in rectal temperature (TR) in the first 1 h. EAEZZR at the lower dose of 125 mg/kg showed substantial potency against yeast-induced fever for up to 2 h compared to 0 h in controls. A significant reduction of TR was observed in rats treated with standard drug aspirin in the third through fourth hours. Based on the present findings, ethyl acetate extract of Zingiber zerumbet rhizomes could be considered safe up to the dose of 5000 mg/kg, and the identification of active ingredients of Zingiber zerumbet rhizomes may allow their use in the treatment of fever with dengue virus infection.


Assuntos
Acetatos , Extratos Vegetais , Rizoma , Sesquiterpenos , Ratos , Animais , Ratos Sprague-Dawley , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Saccharomyces cerevisiae , Febre/tratamento farmacológico
2.
Phytochemistry ; 222: 114092, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38604323

RESUMO

Phytochemical study of the fruits of Chisocheton erythrocarpus (Hiern) allowed the identification of eight undescribed limonoids, namely erythrocarpines O - V (1-6, 7a and 7b), along with seven known compounds. The structures of these compounds were elucidated based on spectroscopic and HRMS data, along with electronic circular dichroism to configure the absolute configuration. Erythrocarpines O and P are γ-hydroxybutenolide analogs of mexicanolide-type limonoids while erythrocarpine Q - V are phragmalin-type limonoids possessing a 1,29-oxymethylene bridge with either benzoyl or cinnamoyl moiety in their structures. Mosquito larvicidal activity revealed that crude DCM extract of C. erythrocarpus possessed a good larvicidal effect against Aedes aegypti larvae in 48 h (LC50 = 153.0 ppm). Subsequent larvicidal activity of isolated compounds indicated that erythrocarpine G (10) and 14-deoxyxyloccensin K (11) were responsible for the enhanced larvicidal effect of the extract, reporting LC50 values of 18.55 ppm and 41.16 ppm, respectively. Moreover, residual activity testing of the crude DCM extract revealed that the duration of its larvicidal effects is up to 14 days, where it maintained a 98 % larval mortality throughout the test period, under laboratory conditions.

3.
Fitoterapia ; 174: 105873, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417682

RESUMO

Diabetes mellitus stands as a metabolic ailment marked by heightened blood glucose levels due to inadequate insulin secretion. The primary aims of this investigative inquiry encompassed the isolation of phytochemical components from the bark of Kopsia teoi, followed by the assessment of their α-amylase inhibition. The phytochemical composition of the K. teoi culminated in the discovery of a pair of new indole alkaloids; which are 16-epi-deacetylakuammiline N(4)-methylene chloride (akuammiline) (1), and N(1)-methoxycarbonyl-11-methoxy-12-hydroxy-Δ14-17-kopsinine (aspidofractinine) (2), together with five known compounds i.e. kopsiloscine G (aspidofractinine) (3), akuammidine (sarpagine) (4), leuconolam (aspidosperma) (5), N-methoxycarbonyl-12-methoxy-Δ16, 17-kopsinine (aspidofractinine) (6), and kopsininate (aspidofractinine) (7). All compounds were determined via spectroscopic analyses. The in vitro evaluation against α-amylase showed good inhibitory activities for compounds 5-7 with the inhibitory concentration (IC50) values of 21.7 ± 1.2, 34.1 ± 0.1, and 30.0 ± 0.8 µM, respectively compared with the reference acarbose (IC50 = 34.4 ± 0.1 µM). The molecular docking outputs underscored the binding interactions of compounds 5-7 ranging from -8.1 to -8.8 kcal/mol with the binding sites of α-amylase. Consequently, the outcomes highlighted the anti-hyperglycemic attributes of isolates from K. teoi.


Assuntos
Apocynaceae , Alcaloides de Triptamina e Secologanina , Simulação de Acoplamento Molecular , alfa-Amilases , Estrutura Molecular , Alcaloides Indólicos , Compostos Fitoquímicos/farmacologia , Apocynaceae/química
4.
Fitoterapia ; 173: 105765, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38042506

RESUMO

A phytochemical study on the bark of Chisocheton erythrocarpus Hiern (Meliaceae) has led to the isolation of six new phragmalin-type limonoids named erythrocarpines I - N (1-6) along with one known limonoid, erythrocarpine F (7). Their structures were fully characterized by spectroscopic methods. The pre-treatment of NG108-15 cells with 1-5, 7 (2 h) demonstrated low to good protective effects against H2O2 exposure; 1 (83.77% ± 1.84 at 12.5 µM), 2 (69.07 ± 2.01 at 12.5 µM), 3 (80.38 ± 2.1 at 12.5 µM), 4 (62.33 ± 1.95 at 25 µM),5 (58.67 ± 1.85 at 50 µM) and 7 (66.07 ± 2.03 at 12.5 µM). Interestingly, 1 and 3 demonstrated comparable protective effects to positive control epigallocatechin gallate (EGCG) with similar cell viability capacity (≈ 80%), having achieved that at lower concentration (12.5 µM) than EGCG (50 µM). Collectively, the results suggested the promising use of 1 and 3 as potential neuroprotective agents against hydrogen peroxide-induced cytotoxicity in neuronal model.


Assuntos
Limoninas , Meliaceae , Fármacos Neuroprotetores , Estrutura Molecular , Fármacos Neuroprotetores/farmacologia , Peróxido de Hidrogênio , Limoninas/farmacologia , Limoninas/química , Meliaceae/química
5.
Nat Prod Res ; : 1-8, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38009213

RESUMO

Phytochemical investigation on the bark of E. kingiana plant afforded ten compounds, including six polyketides namely kingianin A 1, kingianin B 2, kingianin E 3, kingianin F 4, kingianin K 5 and kingianin L 6, three endiandric acids; kingianic acid A 7, tsangibeilin B 8 and endiandric acid M 9, and one sesquiterpene; daibuoxide 10. All compounds were separated as racemic mixture by recycling high-performance liquid chromatography (RHPLC), except for daibuoxide. Their structures were elucidated by detailed spectroscopic and comparative literature data analysis. This is the first report on the presence of the sesquiterpene; daibuoxide in Endiandra genus. In vitro enzymatic bio-evaluation of the isolated compounds against α-amylase and α-glucosidase showed that 4 demonstrated the best α-amylase and α-glucosidase inhibitory activity with IC50 values of 181.54 ± 6.27 µg/mL and 237.87 ± 0.07 µg/mL, respectively. In addition, molecular docking analysis confirmed the α-amylase and α-glucosidase inhibitory activities demonstrated by 4.

6.
Acta Trop ; 248: 107033, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37783284

RESUMO

Acanthamoeba castellanii is an opportunistic free-living amoeba (FLA) pathogen which can cause fatal central nervous system (CNS) infection, granulomatous amoebic encephalitis (GAE) and potentially blinding ocular infection, Acanthamoeba keratitis (AK). Acanthamoeba species remain a challenging protist to treat due to the unavailability of safe and effective therapeutic drugs and their ability to protect themselves in the cyst stage. Natural products and their secondary metabolites play a pivotal role in drug discovery against various pathogenic microorganisms. In the present study, the ethyl acetate extract of Myristica cinnamomea King fruit was evaluated against A. castellanii (ATCC 50492), showing an IC50 of 45.102 ± 4.62 µg/mL. Previously, the bio-guided fractionation of the extract resulted in the identification of three active compounds, namely Malabaricones (A-C). The isolated and thoroughly characterized acylphenols were evaluated for their anti-amoebic activity against A. castellanii for the first time. Among tested compounds, Malabaricone B (IC50 of 101.31 ± 17.41 µM) and Malabaricone C (IC50 of 49.95 ± 6.33 µM) showed potent anti-amoebic activity against A. castellanii trophozoites and reduced their viability up-to 75 and 80 %, respectively. Moreover, both extract and Malabaricones also significantly (p < 0.05) inhibit the encystation and excystation of A. castellanii, while showed minimal toxicity against human keratinocyte cells (HaCaT cells) at lower tested concentrations. Following that, the explanation of the possible mechanism of action of purified compounds were assessed by detection of the state of chromatin. Hoechst/PI 33342 double staining showed that necrotic cell death occurred in A. castellanii trophozoites after 8 h treatment of Malabaricones (A-C). These findings demonstrate that Malabaricones B and C could serve as promising therapeutic options against A. castellanii infections.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba castellanii , Amebíase , Amebicidas , Myristica , Animais , Humanos , Amebicidas/farmacologia , Frutas , Amebíase/tratamento farmacológico , Trofozoítos
7.
Bioorg Chem ; 141: 106859, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37742494

RESUMO

A bio-assay guided fractionation strategy based on cholinesterase assay combined with 13C NMR-based dereplication was used to identify active metabolites from the bark of Mesua lepidota. Eight compounds were identified with the aid of the 13C NMR-based dereplication software, MixONat, i.e., sitosterol (1), stigmasterol (2), α-amyrin (3), friedelin (6), 3ß-friedelinol (7), betulinic acid (9), lepidotol A (10) and lepidotol B (11). Further bio-assay guided isolation of active compounds afforded one xanthone, pyranojacareubin (12) and six coumarins; lepidotol A (10), lepidotol B (11), lepidotol E (13), lepidotin A (14), and lepidotin B (15), including a new Mammea coumarin, lepidotin C (16). All the metabolites showed strong to moderate butyrylcholinesterase (BChE) inhibition. Lepidotin B (15) exhibited the most potent inhibition towards BChE with a mix-mode inhibition profile and a Ki value of 1.03 µM. Molecular docking and molecular dynamics simulations have revealed that lepidotin B (15) forms stable interactions with key residues within five critical regions of BChE. These regions encompass residues Asp70 and Tyr332, the acyl hydrophobic pocket marked by Leu286, the catalytic triad represented by Ser198 and His438, the oxyanion hole (OH) constituted by Gly116 and Gly117, and the choline binding site featuring Trp82. To gauge the binding strength of lepidotin B (15) and to pinpoint pivotal residues at the binding interface, free energy calculations were conducted using the Molecular Mechanics Generalized Born Surface Area (MM-GBSA) approach. This analysis not only predicted a favourable binding affinity for lepidotin B (15) but also facilitated the identification of significant residues crucial for the binding interaction.


Assuntos
Butirilcolinesterase , Inibidores da Colinesterase , Inibidores da Colinesterase/química , Butirilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Casca de Planta/química , Software , Acetilcolinesterase/metabolismo
8.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37445877

RESUMO

Studies have been conducted over the last decade to identify secondary metabolites from plants, in particular those from the class of alkaloids, for the development of new anti-Alzheimer's disease (AD) drugs. The genus Alseodaphne, comprising a wide range of alkaloids, is a promising source for the discovery of new cholinesterase inhibitors, the first-line treatment for AD. With regard to this, a phytochemical investigation of the dichloromethane extract of the bark of A. pendulifolia Gamb. was conducted. Repeated column chromatography and preparative thin-layer chromatography led to the isolation of a new bisbenzylisoquinoline alkaloid, N-methyl costaricine (1), together with costaricine (2), hernagine (3), N-methyl hernagine (4), corydine (5), and oxohernagine (6). Their structures were elucidated by the 1D- and 2D-NMR techniques and LCMS-IT-TOF analysis. Compounds 1 and 2 were more-potent BChE inhibitors than galantamine with IC50 values of 3.51 ± 0.80 µM and 2.90 ± 0.56 µM, respectively. The Lineweaver-Burk plots of compounds 1 and 2 indicated they were mixed-mode inhibitors. Compounds 1 and 2 have the potential to be employed as lead compounds for the development of new drugs or medicinal supplements to treat AD.


Assuntos
Alcaloides , Benzilisoquinolinas , Lauraceae , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Inibidores da Colinesterase/química , Butirilcolinesterase/metabolismo , Alcaloides/farmacologia , Alcaloides/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Lauraceae/química , Acetilcolinesterase/metabolismo
9.
Polymers (Basel) ; 14(15)2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35893954

RESUMO

Diabetes mellitus is a prevalent metabolic syndrome that is associated with high blood glucose levels. The number of diabetic patients is increasing every year and the total number of cases is expected to reach more than 600 million worldwide by 2045. Modern antidiabetic drugs alleviate hyperglycaemia and complications that are caused by high blood glucose levels. However, due to the side effects of these drugs, plant extracts and bioactive compounds with antidiabetic properties have been gaining attention as alternative treatments for diabetes. Natural products are biocompatible, cheaper and expected to cause fewer side effects than the current antidiabetic drugs. In this review, various nanocarrier systems are discussed, such as liposomes, niosomes, polymeric nanoparticles, nanoemulsions, solid lipid nanoparticles and metallic nanoparticles. These systems have been applied to overcome the limitations of the current drugs and simultaneously improve the efficacy of plant-based antidiabetic drugs. The main challenges in the formulation of plant-based nanocarriers are the loading capacity of the plant extracts and the stability of the carriers. A brief review of lipid nanocarriers and the amphipathic properties of phospholipids and liposomes that encapsulate hydrophilic, hydrophobic and amphiphilic drugs is also described. A special emphasis is placed on metallic nanoparticles, with their advantages and associated complications being reported to highlight their effectiveness for treating hyperglycaemia. The present review could be an interesting paper for researchers who are working in the field of using plant extract-loaded nanoparticles as antidiabetic therapies.

10.
J Trop Med ; 2022: 5794350, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309872

RESUMO

The ethnopharmacological information gathered over many centuries and the presence of diverse metabolites have made the medicinal plants as the prime source of drugs. Despite the positive attributes of natural products, there are many questions pertaining to their mechanism of actions and molecular targets that impede their development as therapeutic agents. One of the major challenges in cancer research is the toxicity exerted by investigational agents towards the host. An understanding of their molecular targets, underlying mechanisms can reveal their anticancer efficacy, help in optimal therapeutic dose selection, to mitigate their side effects and toxicity towards the host. The purpose of this review is to collate details on natural products that are recently been investigated extensively in the past decade for their anticancer potential. Besides, critical analysis of their molecular targets and underlying mechanisms on multiple cancer cell lines, an in-depth probe of their toxicological screening on rodent models is outlined as well to observe the prevalence of their toxicity towards host. This review can provide valuable insights for researchers in developing methods, strategies during preclinical and clinical evaluation of anticancer candidates.

11.
Scientifica (Cairo) ; 2022: 9700794, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186344

RESUMO

This research aimed to determine the topical administration effect of the combination of Sargassum duplicatum and Garcinia mangostana extracts to ameliorate diabetic open wound healing. The study used 24 adult males of Mus musculus (BALB/c strain, 3-4 months, 30-40 g). They were divided into normal control groups (KN) and diabetic groups. The diabetic group was streptozotocin-induced and divided further into three treatment groups: the diabetic control group (KD), the S. duplicatum treatment group (PA), and the combination of S. duplicatum and G. mangostana treatment group (PAM). The dose of treatment was 50 mg/kg of body weight. Each group was divided into three treatment durations, which were 3 days, 7 days, and 14 days. The wound healing process was determined by wound width, the number of neutrophils, macrophages, fibroblasts, fibrocytes, and collagen density. Histological observation showed that the topical administration of combination extracts increased the re-epithelialization of the wounded area, fibroblasts, fibrocytes, and collagen synthesis. The topical administration of combination extracts also decreased the number of neutrophils and macrophages. This study concluded that the topical administration of the combination of S. duplicatum and G. mangostana extracts improved the open wound healing process in diabetic mice.

12.
Nat Prod Res ; 36(6): 1416-1424, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33576269

RESUMO

An undescribed conjugated sesquiterpene, amelicarin (1), together with nine known compounds (2-10) were isolated for the first time from Melicope latifolia. Their structures were elucidated by extensive NMR spectroscopic and mass spectrometric methods. The conjugated sesquiterpene possesses a unique 6/6/9/4-ring fused tetracyclic skeleton. The proposed biosynthesis pathway of 1 consist of three reactions steps: (1) polyketide formation, (2) cyclisation and (3) addition to form the conjugated sesquiterpenoid as final metabolite. Out of the ten isolated metabolites, amelicarin (1) showed activity against 4 cancerous cell lines namely SK-MEL skin cancer, KB oral cancer, BT-549 breast cancer, and SK-OV-3 ovarian cancer with IC50 values between 15 and 25 µg/mL.


Assuntos
Rutaceae , Sesquiterpenos , Espectroscopia de Ressonância Magnética , Rutaceae/química , Sesquiterpenos/farmacologia
13.
Nat Prod Res ; 36(6): 1581-1586, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33593208

RESUMO

The use of antidiabetic agents which control glycemic levels in the blood and simultaneously inhibit oxidative stress is an important strategy in the prevention of Diabetes Mellitus and its complications. In our previous study, malabaricone C (3) and its dimer, giganteone A (5) exhibited significant DPPH free radical scavenging activities which were lower than the activity of the positive control, ascorbic acid. These compounds were evaluated for their α-glucosidase inhibitory activities at different concentrations (0.02-2.5 mM) in the present study. Compounds 3 (IC50 59.61 µM) and 5 (IC50 39.52 µM) were identified as active alpha-glucosidase inhibitors, each respectively being 24 and 37 folds more potent than the standard inhibitor, acarbose. Based on the molecular docking studies, compounds 3 and 5 docked into the active site of the α-glucosidase enzyme, forming mainly hydrogen bonds in the active site.


Assuntos
Diabetes Mellitus , Inibidores de Glicosídeo Hidrolases , Compostos de Bifenilo , Diabetes Mellitus/tratamento farmacológico , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Simulação de Acoplamento Molecular , Resorcinóis , Relação Estrutura-Atividade , alfa-Glucosidases/metabolismo
14.
Pharm Biol ; 59(1): 964-973, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34347568

RESUMO

CONTEXT: Melicope latifolia (DC.) T. G. Hartley (Rutaceae) was reported to contain various phytochemicals including coumarins, flavonoids, and acetophenones. OBJECTIVE: This study investigates the antidiabetic and antioxidant effects of M. latifolia bark extracts, fractions, and isolated constituents. MATERIALS AND METHODS: Melicope latifolia extracts (hexane, chloroform, and methanol), fractions, and isolated constituents with varying concentrations (0.078-10 mg/mL) were subjected to in vitro α-amylase and dipeptidyl peptidase-4 (DPP-4) inhibitory assay. Molecular docking was performed to study the binding mechanism of active compounds towards α-amylase and DPP-4 enzymes. The antioxidant activity of M. latifolia fractions and compounds were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and ß-carotene bleaching assays. RESULTS: Melicope latifolia chloroform extract showed the highest antidiabetic activity (α-amylase IC50: 1464.32 µg/mL; DPP-4 IC50: 221.58 µg/mL). Fractionation of chloroform extract yielded four major fractions (CF1-CF4) whereby CF3 showed the highest antidiabetic activity (α-amylase IC50: 397.68 µg/mL; DPP-4 IC50: 37.16 µg/mL) and resulted in ß-sitosterol (1), halfordin (2), methyl p-coumarate (3), and protocatechuic acid (4). Isolation of compounds 2-4 from the species and their DPP-4 inhibitory were reported for the first time. Compound 2 showed the highest α-amylase (IC50: 197.53 µM) and ß-carotene (88.48%) inhibition, and formed the highest number of molecular interactions with critical amino acid residues of α-amylase. The highest DPP-4 inhibition was exhibited by compound 3 (IC50: 911.44 µM). DISCUSSION AND CONCLUSIONS: The in vitro and in silico analyses indicated the potential of M. latifolia as an alternative source of α-amylase and DPP-4 inhibitors. Further pharmacological studies on the compounds are recommended.


Assuntos
Inibidores da Dipeptidil Peptidase IV/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Rutaceae/química , alfa-Amilases/antagonistas & inibidores , Antioxidantes/química , Antioxidantes/farmacologia , Simulação por Computador , Dipeptidil Peptidase 4 , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Técnicas In Vitro , Simulação de Acoplamento Molecular , Estrutura Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Casca de Planta/química , Extratos Vegetais/isolamento & purificação , alfa-Amilases/química
15.
PLoS One ; 16(5): e0251534, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33970960

RESUMO

Melicope glabra (Blume) T. G. Hartley from the Rutaceae family is one of the richest sources of plant secondary metabolites, including coumarins and flavanoids. This study investigates the free radical scavenging and antibacterial activities of M. glabra and its isolated compounds. M. glabra ethyl acetate and methanol extracts were prepared using the cold maceration technique. The isolation of compounds was performed with column chromatography. The free radical scavenging activity of the extracts and isolated compounds were evaluated based on their oxygen radical absorbance capacity (ORAC) activities. The extracts and compounds were also subjected to antibacterial evaluation using bio-autographic and minimal inhibitory concentration (MIC) techniques against two oral pathogens, Enterococcus faecalis and Streptococcus mutans. Isolation of phytoconstituents from ethyl acetate extract successfully yielded quercetin 3, 5, 3'-trimethyl ether (1) and kumatakenin (2), while the isolation of the methanol extract resulted in scoparone (3), 6, 7, 8-trimethoxycoumarin (4), marmesin (5), glabranin (6), umbelliferone (7), scopoletin (8), and sesamin (9). The study is the first to isolate compound (1) from Rutaceae plants, and also the first to report the isolation of compounds (2-5) from M. glabra. The ORAC evaluation showed that the methanol extract is stronger than the ethyl acetate extract, while umbelliferone (7) exhibited the highest ORAC value of 24 965 µmolTE/g followed by glabranin (6), sesamin (9) and scopoletin (8). Ethyl acetate extract showed stronger antibacterial activity towards E. faecalis and S. mutans than the methanol extract with MIC values of 4166.7 ± 1443.4 µg/ml and 8303.3 ± 360.8 µg/ml respectively. Ethyl acetate extract inhibited E. faecalis growth, as shown by the lowest optical density value of 0.046 at a concentration of 5.0 mg/mL with a percentage inhibition of 95%. Among the isolated compounds tested, umbelliferone (7) and sesamin (9) exhibited promising antibacterial activity against S. mutans with both exhibiting MIC values of 208.3 ± 90.6 µg/ml. Findings from this study suggests M. glabra as a natural source of potent antioxidant and antibacterial agents.


Assuntos
Antibacterianos/farmacologia , Enterococcus faecalis/crescimento & desenvolvimento , Sequestradores de Radicais Livres/farmacologia , Casca de Planta/química , Extratos Vegetais/química , Rutaceae/química , Streptococcus mutans/crescimento & desenvolvimento , Antibacterianos/química , Sequestradores de Radicais Livres/química
16.
Molecules ; 26(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799883

RESUMO

Leishmaniasis is a vector-borne disease caused by the protozoan parasite Leishmania found in tropical and sub-tropical areas, affecting 12 million people around the world. Only few treatments are available against this disease and all of them present issues of toxicity and/or resistance. In this context, the development of new antileishmanial drugs specifically directed against a therapeutic target appears to be a promising strategy. The GDP-Mannose Pyrophosphorylase (GDP-MP) has been previously shown to be an attractive therapeutic target in Leishmania. In this study, a chemical library of 5000 compounds was screened on both L. infantum (LiGDP-MP) and human (hGDP-MP) GDP-MPs. From this screening, oncostemonol D was found to be active on both GDP-MPs at the micromolar level. Ten alkyl-resorcinol derivatives, of which oncostemonols E and J (2 and 3) were described for the first time from nature, were then evaluated on both enzymes as well as on L. infantum axenic and intramacrophage amastigotes. From this evaluation, compounds 1 and 3 inhibited both GDP-MPs at the micromolar level, and compound 9 displayed a three-times lower IC50 on LiGDP-MP, at 11 µM, than on hGDP-MP. As they displayed mild activities on the parasite, these compounds need to be further pharmacomodulated in order to improve their affinity and specificity to the target as well as their antileishmanial activity.


Assuntos
Leishmaniose/tratamento farmacológico , Nucleotidiltransferases/antagonistas & inibidores , Resorcinóis/farmacologia , Animais , Antiprotozoários/farmacologia , Humanos , Leishmania/efeitos dos fármacos , Leishmania/patogenicidade , Camundongos , Nucleotidiltransferases/efeitos dos fármacos , Nucleotidiltransferases/metabolismo , Preparações Farmacêuticas , Células RAW 264.7 , Resorcinóis/síntese química , Resorcinóis/química , Bibliotecas de Moléculas Pequenas
17.
Nat Prod Res ; 35(6): 937-944, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31210054

RESUMO

A new antimalarial sterol, kaimanol (1), along with a known sterol, saringosterol (2) was isolated from the Indonesian Marine sponge, Xestospongia sp. The chemical structure of the new compound was determined on the basis of spectroscopic evidences and by comparison to those related compounds previously reported. Isolated compounds, 1 and 2 were evaluated for their antiplasmodial effect against Plasmodium falciparum 3D7 strains. Compounds 1 and 2 exhibited antiplasmodial activity with IC50 values of 359 and 0.250 nM, respectively.


Assuntos
Antimaláricos/farmacologia , Organismos Aquáticos/química , Plasmodium falciparum/efeitos dos fármacos , Esteróis/isolamento & purificação , Esteróis/farmacologia , Xestospongia/química , Animais , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Indonésia , Concentração Inibidora 50 , Espectroscopia de Prótons por Ressonância Magnética
18.
J Asian Nat Prod Res ; 23(8): 781-788, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32536210

RESUMO

A seco-apotirucallane-type triterpenoid, namely angustifolianin (1), along with three dammarane-type triterpenoids, (20S, 24S)-epoxy-dammarane-3ß,25-diol (2), 3-epi-cabraleahydroxylactone (3), and cabralealactone (4), were isolated from the stem bark of Aglaia angustifolia Miq. The Chemical structure of the new compounds was elucidated on the basis of spectroscopic data. All of the compounds were evaluated for their cytotoxic effects against MCF-7 breast cancer cells. Among those compounds, angustifolianin (1) showed strongest cytotoxic activity with an IC50 value of 50.5 µg/ml.


Assuntos
Aglaia , Antineoplásicos , Triterpenos , Estrutura Molecular , Casca de Planta , Triterpenos/farmacologia
19.
Trop Life Sci Res ; 31(1): 159-178, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32963717

RESUMO

Alpinia conchigera Griff. is a plant species from the family Zingiberaceae. Coloquially known as wild ginger, Alpinia conchigera Griff. is used as food condiment and for traditional treatment of skin diseases. Isolation studies to identify bioactive compounds of rhizomes of Alpinia conchigera yielded seven compounds; 1'S-1'-acetoxychavicol acetate (1), trans-p-coumaryl diacetate (2), p-hydroxycinnamyl acetate (3), 1'S-1'-hydroxychavicol acetate (4) p-hydroxybenzaldehyde (5), stigmasterol (6) and ß-sitosterol (7). Compounds 1, 2 and 5 were evaluated for antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA). Among the compounds tested, Compound 1 showed good antimicrobial activity against the strain of MRSA with minimum inhibition concentration (MIC) value of 0.5 mg/mL. Meanwhile, Compounds 2 and 5 exhibited moderate activity with MIC value between 1.0 and 2.0 mg/mL. These findings indicate antimicrobial potential of 1'S-1'-acetoxychavicol acetate (1), compound derived from rhizome of Alpinia conchigera Griff. against MRSA, which warrant further investigation.

20.
Biomolecules ; 10(9)2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887413

RESUMO

Modulation of major histocompatibility complex (MHC) expression using drugs has been proposed to control immunity. Phytochemical investigations on Garcinia species have allowed the isolation of bioactive compounds such as polycyclic polyprenylated acylphloroglucinols (PPAPs). PPAPs such as guttiferone J (1), display anti-inflammatory and immunoregulatory activities while garcinol (4) is a histone acetyltransferases (HAT) p300 inhibitor. This study reports on the isolation, identification and biological characterization of two other PPAPs, i.e., xanthochymol (2) and guttiferone F (3) from Garcinia bancana, sharing structural analogy with guttiferone J (1) and garcinol (4). We show that PPAPs 1-4 efficiently downregulated the expression of several MHC molecules (HLA-class I, -class II, MICA/B and HLA-E) at the surface of human primary endothelial cells upon inflammation. Mechanistically, PPAPs 1-4 reduce MHC proteins by decreasing the expression and phosphorylation of the transcription factor STAT1 involved in MHC upregulation mediated by IFN-γ. Loss of STAT1 activity results from inhibition of HAT CBP/p300 activity reflected by a hypoacetylation state. The binding interactions to p300 were confirmed through molecular docking. Loss of STAT1 impairs the expression of CIITA and GATA2 but also TAP1 and Tapasin required for peptide loading and transport of MHC. Overall, we identified new PPAPs issued from Garcinia bancana with potential immunoregulatory properties.


Assuntos
Garcinia/química , Floroglucinol/análogos & derivados , Floroglucinol/farmacologia , Compostos Policíclicos/farmacologia , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Acilação , Benzofenonas/química , Benzofenonas/isolamento & purificação , Benzofenonas/farmacologia , Regulação para Baixo/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Fator de Transcrição GATA2/metabolismo , Humanos , Interferon gama/metabolismo , Complexo Principal de Histocompatibilidade/efeitos dos fármacos , Complexo Principal de Histocompatibilidade/genética , Proteínas de Membrana Transportadoras/metabolismo , Simulação de Acoplamento Molecular , Proteínas Nucleares/metabolismo , Floroglucinol/química , Floroglucinol/isolamento & purificação , Compostos Policíclicos/química , Compostos Policíclicos/isolamento & purificação , Prenilação , Cultura Primária de Células , Fator de Transcrição STAT1/metabolismo , Terpenos/química , Terpenos/farmacologia , Transativadores/metabolismo , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Fatores de Transcrição de p300-CBP/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...